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Abstract: Background/Objectives: Determining how a patient with metastatic cancer is responding
to therapy can be difficult for medical oncologists, especially with text-only radiology reports. In
this investigation, we assess the clinical usefulness of a new algorithm-based analysis that provides
spatial location and quantification for each detected lesion region of interest (ROI) and compare it
to information included in radiology reports in the United States. Methods: Treatment response
radiology reports for FDG PET/CT scans were retrospectively gathered from 228 patients with
metastatic cancers. Each radiology report was assessed for the presence of both qualitative and
quantitative information. A subset of patients (N = 103) was further analyzed using an algorithm-
based service that provides the clinician with comprehensive quantitative information, including
change over time, of all detected ROI with visualization of anatomical location. For each patient, three
medical oncologists from different practices independently rated the usefulness of the additional
analysis overall and in four subcategories. Results: In the 228 radiology reports, quantitative
information of size and uptake was provided for at least one lesion at one time point in 78% (size) and
95% (uptake) of patients. This information was reported for both analyzed time points (current scan
and previous comparator) in 52% (size) and 66% (uptake) of patients. Only 7% of reports quantified
the total number of lesions, and none of the reports quantified changes in all lesions for patients
with more than a few lesions. In the assessment of the augmentative algorithm-based analysis,
the majority of oncologists rated it as overall useful for 98% of patients (101/103). Within specific
categories of use, the majority of oncologists voted to use it for making decisions regarding systemic
therapy in 97% of patients, for targeted therapy decisions in 72% of patients, for spatial location
information in 96% of patients, and for patient education purposes in 93% of patients. Conclusions:
For patients with metastatic cancer, the algorithm-based analysis of all ROI would allow oncologists
to better understand treatment response and support their work to more precisely optimize the
patient’s therapy.

Keywords: oncology; FDG PET/CT; radiology report; clinically meaningful output; augmentative

1. Introduction

For medical oncologists, deciding whether to continue the current treatment regimen
for a patient with metastatic cancer or change their clinical management can be nuanced
and challenging. This is because patients with metastatic cancer can have many lesions
with heterogeneous response to treatment [1–5]. This heterogeneity adds complexity in
determining whether a current treatment is effective and is compounded by factoring in
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individual lesions’ spatial location and rate of change. Further, oncologists must balance
management of treatment-related toxicity and other symptoms with effective disease
control. Oncologists have many options for changes in patient management during the
response assessment period, including changes to systemic therapy, referral for radiation
or other local ablative modalities, pain management, and other palliative interventions.

In current clinical practice, radiological images such as FDG PET/CT are used for
diagnosing disease and assessing response to treatment. Information, both clinical and
quantitative, is gathered from the images and collated in a text report by an interpreting
physician. For patients with multiple lesions, the current standard practice is to measure a
limited subset. Some institutions have implemented standardized response criteria such
as RECIST and PERCIST [6,7]. These criteria, which are also based on quantification
of a limited subset of lesions, were developed for use in clinical trials to standardize
reporting, and thus were meant to show differences based on a population mean, not for
individual-patient clinical decision-making [8]. Several studies have shown that extracting
quantitative information from all lesions in a patient, including individual lesion rates of
change, improves outcome prognosis, compared with the information from the typical
subset examined in a radiology report or standardized response criteria [9–11]. However,
this approach is currently not practical in clinical practice as it is time-consuming and
subject to inter-physician variability [12]. Substantial work applying artificial intelligence
to automation in oncology and PET/CT imaging has focused largely on population-level
assessments and research-specific applications [13–19], rather than clinical implementation
and providing care to individual patients.

The text-only format of standard-of-care radiology reports can be challenging for
use by oncologists to completely understand a patient’s response to treatment. Written
reports can result in discordance between the message intended by the radiologist/nuclear
medicine physician and the message perceived by the oncologist [20]. In particular, spatial
information and visualization can be difficult to convey using only written text. One study
found that 86% of surveyed oncologists expressed interest in being provided with images
in addition to a text-only report [21]. Also, while work is ongoing to improve the quality
and consistency of radiology reports [22], oncologists report a large variation in the quality
of radiology reports received in current clinical practice [23,24].

Considering both the treating physician’s need for additional information and the
impracticality of that information being extracted during the typical radiology workflow,
the solution to these challenges is not a technology to improve or enhance radiology re-
porting. Rather, the solution is to provide information that is distinct from that captured in
radiology reports directly to the treating physician in a format optimized for therapeutic
decision-making. This creates an opportunity for the development of a new, separate medi-
cal service that uses algorithm-based software (TRAQinform IQ v 2.0) to analyze previously
acquired and interpreted serial images for interpretation and use by an oncologist. The
analysis provided by this new medical service needs to present quantitative information
for all detected lesions, including the rate of change across serial images. It also needs
to provide information in a visual format that can be appropriately interpreted by the
treating oncologist. This additional information would enable treating physicians to more
effectively interpret a patient’s treatment response, discuss findings at multidisciplinary
meetings, and make therapy decisions.

In this investigation, we evaluated the clinical meaningfulness of such an algorithm-
based service as an addition to the standard care of patients with metastatic cancer by
assessing the information needs not met by current practice as well as the clinical usefulness
of an example service. To achieve this, FDG PET/CT radiology reports of patients with
cancer during or after treatment were gathered and assessed for several objective criteria,
aiming to capture whether the reports included basic nuclear medicine, organization, quan-
titative, and impression information. In a subset of patients, seven oncologists were shown
results from a novel, algorithm-based, software-performed analysis and quantification
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capturing changes in all FDG avid regions of interest (ROI) and asked to rate its usefulness
in providing patient care.

2. Materials and Methods
2.1. Data

Inclusion criteria for the study were oncology patients over the age of 22 with a
previously performed pair of sequential 18F-FDG PET/CT scans as part of a standard
clinical practice. Sequential scans were required to be within 18 months of one another.
Queries were provided to two third-party data aggregators to ensure that the data collection
included a diverse geographical and patient population.

Scans from patients with various disease indications were retrospectively collected
from a variety of imaging centers in the United States. Sequential selection was performed
to identify patients from varied sites with varied primary cancer types. To mitigate selection
bias, the only information available during the selection process was the cancer type, scan
dates (to ensure patients had pairs of sequential scans matching the eligibility criteria), and
anonymized patient IDs. Radiology reports, images, and other patient information were
not made available until after selection for the study.

Previously generated radiology reports of the second PET/CT scan, which were
written at the time of the imaging exam by the qualified radiologist at the imaging center
as part of the center’s standard-of-care protocol, were then gathered. In addition, FDG
PET/CT images of the scan pairs corresponding to the two time points assessed on the
radiology reports were evaluated.

2.2. Standard Radiology Report Analysis

A set of objective criteria for information considered important to be included in
a PET scan radiology report intended for assessing treatment response was established.
These criteria were grouped into four categories: nuclear medicine basics, organization,
quantification, and impression. Full criteria, including explanations and clinical relevance,
are shown in Table 1. The number and percentage of reports meeting each criterion are
reported with 95% confidence intervals (CIs) using a test of proportions.

A separate overall “quantification” score was given to each report, defined as whether
the following quantitative information was present: (1) reference region uptake and (2) quan-
tification of lesion size or SUV across two time points. Reports that had this information
were rated as “quantitative”. A comparison of the proportion of scans that were rated
as quantitative, stratified by the median year of scan acquisition, was performed using a
two-proportions test.

Table 1. Treatment response radiology report objective criteria.

Category Information Description and Clinical Relevance

Nuclear
medicine basics

Fasting glucose levels (mg/dL) Ensures adequate uptake of radiotracer.

Activity of injected radiotracer (mCi) Ensures an appropriate dose was given for adequate biodistribution.

Quantification of reference regions (liver or blood pool) Establishes a background value for lesion quantification.

Location of injection site, specifically left/right arm Aids in determining whether abnormal uptake is related to
radiotracer injection or extravasation.

Organization

Separation of reported information by anatomical parts No specific requirements of how many anatomic sections were
included. Important for readability of reports.

Reason for exam (cancer type, restaging/recurrence) Important to ensure correct interpretation of exam.

Patient treatment (e.g., chemotherapy, immunotherapy) Important to ensure treatment-related effects are considered when
reading the scan (e.g., immunotherapy-related adverse events).



J. Clin. Med. 2024, 13, 6168 4 of 13

Table 1. Cont.

Category Information Description and Clinical Relevance

Quantification

Numerical value for the number of lesions on the scans
Important to determine disease progression and for patient education.
Note: scans marked as having “no lesions” were counted as
containing this information.

Quantification of lesion size at single time point
Numerical value required for at least one lesion, no restrictions on
units (e.g., cm vs mm) required. Important to understand clinical
relevance of lesion.

Quantification of lesion size across the two time points
Two numerical values required (one for each scan) for at least one
lesion unless lesion was described as new or disappeared. Important
to understand change in response to therapy and clinical relevance.

Quantification of lesion SUV at a single time point
Numerical SUV value required for at least one lesion, no restriction
on type of measurement (e.g., maximum or mean). Important to
understand clinical relevance of lesion.

Quantification of lesion SUV across the two time points
Two numerical values required (one for each scan) for at least one
lesion unless lesion was described as new or disappeared. Important
to understand change in response to therapy and clinical relevance.

Impression

Recommended follow-up Not important for every scan, but useful for equivocal findings.

Clear statement on overall patient response (e.g.,
complete response, partial response/improvement,
stable, progression, new disease)

Important to ensure scan is interpreted correctly without differences
in perceived messaging.

2.3. Algorithm-Based Service Analysis

Approximately half (45%) of the patients were randomly chosen for a secondary
analysis. As the data was received in a randomized order, this analysis involved sequential
sampling of patients with a further requirement that the sequential PET/CT scans must be
collected within 12 months of one another. To minimize bias, patient information including
radiology reports, disease type and stage, and imaging center were not considered in the
patient selection process.

Seven oncologists were asked to review the information in the radiology report,
after which they were provided with an augmentative algorithm-based analysis of the
serial FDG PET/CT scans to review. This analysis included a quantification of change
for multiple anatomic and physiologic metrics as well as spatial location, visualization,
and classification (new, increasing, unchanged, decreasing, disappeared) of each detected
lesion ROI. For this study, the analysis was provided by the algorithm-based service
software TRAQinform IQ (AIQ Solutions, Madison, WI, USA), which has the workflow
and functionalities outlined in Figure 1. TRAQinform IQ v 2.0 is an FDA 510(k) cleared
software that has been validated and established to provide excellent accuracy for anatomic
structure segmentation with models previously published in Weisman et al. [25], lesion-ROI
detection with methodologies similar to those established in Perk et al. [26], and a method
for matching ROI across time previously assessed in multiple studies [11,12,27]. All aspects
of the process are monitored by an experienced imaging expert to ensure algorithms work
as expected, and by a nuclear medicine physician to ensure lesion-ROI are correctly detected
and classified. The final analysis, provided in a report format that can be tailored to specific
clinical needs, goes through a quality assurance review by a qualified human before it is
delivered to the clinician. An example of the format used in this study is included in the
Supplementary Material.

The oncologists were asked to rate the usefulness of the new, additional information
provided by the software in several categories. Each patient was randomly assigned for
review by three of the seven oncologists. The oncologists were asked: “Assuming you are
providing care for this patient, please rate the clinical utility of the information included
in the TRAQinform analysis as useful/not useful in the following categories: overall,
for systemic treatment decisions, for targeted treatment decisions, for spatial location
information, and for patient education”. A target of 80% of cases being rated as useful
overall by the majority of oncologists was established as a threshold, indicating whether the
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analysis provided sufficient clinical utility. Whether this target was achieved was assessed
using a two-sided test of proportions with a critical significance level of p = 0.05.
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Figure 1. Schematic of the augmentative algorithm-based analysis including examples of output
information. First, PET/CT images are segmented into 47 anatomic structures and skeleton parts
using a 3D convolutional neural network methodology described in Weisman et al. [25]. Next, lesion-
ROI are detected and segmented using an anatomic structure-specific PET threshold determined
using a statistically optimized regional thresholding methodology outlined in Perk et al. [26]. CT
images from the two time points are then deformably registered to one another before an overlap
volume-based lesion matching algorithm is applied to determine which lesions are new, disappeared,
or matched across scans [12]. Finally, quantitative metrics are extracted from all individual lesion-ROI
and across all lesion-ROI in the patient.

Separate from the oncologist assessment, the results of the algorithm-based service
were collated to determine the prevalence of intra-patient response heterogeneity across
the study population, similar to prior studies [5,9,10]. The presence of heterogeneity within
a patient was defined as that patient presenting with at least one favorable (unchanged,
decreasing, disappeared) and one unfavorable (increasing, new) ROI.

3. Results
3.1. Patient Information

A total of 228 patients from 12 imaging sites in at least 3 US states (note: exact imaging
center information was anonymized prior to data collection) met the criteria for inclusion in
the study. Each site had an average of 18 patients (range: 1 to 88). Demographic information
for all patients is shown in Table 2. Out of the 456 total FDG PET/CT images (2 per patient),
scanner information was available for 435 images (216 patients). Scans were acquired on a
variety of scanner models from various manufacturers, with 186 patients receiving scans
on the same scanner for baseline and follow-up. The median time between baseline and
follow-up scans was 4 months (range: 1 to 18 months).

Table 2. Patient and scan characteristics for all patients and scans where information was not redacted
during the scan transfer process.

Cancer type, n

Breast cancer, n = 57
Lung cancer, n = 41

Head & neck cancer, n = 27
Prostate cancer, n = 26

Melanoma, n = 24

Colorectal cancer, n = 17
Other, n = 16

Lymphoma, n = 13
Gynecological cancer, n = 7

Patient sex, n
Female/Male 113/115

Patient age, years
Median (range) 67 (25–88)



J. Clin. Med. 2024, 13, 6168 6 of 13

Table 2. Cont.

Patient weight, kg
Median (range) 76.9 (44.0–132.9)

Patient race, n

Unreported, n = 185
White, n = 39

Hispanic, n = 2
Black, n = 1
Asian, n = 1

Scanner model, n

Siemens Healthineers Biograph 20, n = 193
Siemens Healthineers Biograph 40, n = 80
Canon Medical Systems Celesteion, n = 69

Siemens Healthineers TruePoint (1093), n = 35
Canon Medical Systems Cartesion Prime, n = 19

GE HealthCare Discovery ST, n = 20
Siemens Healthineers Biograph 6, n = 8

Siemens Healthineers Biograph Horizon, n = 9
Siemens Healthineers Biograph HiRes (1080), n = 2

Unreported, n = 21

3.2. Standard Radiology Report Analysis

Results from the analysis of radiology report criteria are shown in Table 3. The
criteria with the least frequent presence were a quantitative estimate of a number of
lesions on each scan (7%) and the location of the injection site (11%). The injected dose
and reason for the exam were included in all 230 reports. No reports (0/230) contained
the information outlined in all 14 criteria. In all 15 reports that were noted to include
quantitative information, the number of lesions noted in the report was zero (e.g., complete
response to therapy). In 17 of the 151 cases (11%) where SUV was noted across the two
time points, the only lesions noted in the report were new or had disappeared.

Table 3. Results of presence of each criterion in the 228 radiology reports.

Category Information Number
(Out of 228)

Percentage of
Reports (%)

95% Confidence
Intervals (%)

Nuclear medicine basics
Patient glucose information (mg/dL) 226 99 (96.5, 99.8)

Injected dose (mCi) 228 100 (97.9, 100.0)
Quantification of reference regions 97 43 (36.1, 49.3)

Organization Location of injection site 25 11 (7.4, 15.9)
Separated by anatomy 180 79 (73.0, 83.9)

Quantification

Reason for exam 228 100 (97.9, 100.0)
Patient treatment 81 36 (29.4, 42.2)

Number of lesions 15 7 (3.9, 10.8)
Lesion size at single time point 178 78 (72.0, 83.1)

Lesion size across two time points 119 52 (45.5, 58.8)
Lesion SUV at a single time point 217 95 (91.3, 97.4)

Lesion SUV across two time points 151 66 (59.6, 72.3)

Impression Recommended follow-up 46 20 (15.3, 26.1)
Overall patient response 105 46 (39.5, 52.8)

The median scan year across the gathered reports was 2018. This year was used to
stratify reports into categories of early scans (before 2018) or later scans (during or after
2018). Using the binary definition of a quantitative report described previously, 3 of the
110 reports on early scans (3%) were quantitative, while 73 of the 118 reports on later scans
(62%) were quantitative (p < 0.001).
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3.3. Algorithm-Based Service Analysis

An example of the radiology report impression section, compared with an excerpt of
information from the augmentative algorithm-based service for the same patient, is shown
in Figure 2. Both reports were provided to the oncologists before providing their usefulness
ratings for each patient. Each oncologist provided usefulness ratings for between 36 and
50 patients, with each patient being rated by exactly three oncologists.
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Figure 2. Example reports for a patient with metastatic prostate cancer (full TRAQinform report is
shown in the Supplementary Materials), displaying how the augmentative algorithm-based analysis
provides quantification information on all lesions that is not included in the standard radiology report.

The results of whether the oncologists viewed the information contained in the
TRAQinform IQ analysis as useful across each category are shown in Figure 3. Over-
all, the majority of oncologists (at least two of the three) found the analysis to be useful
in 101/103 patients (98.1%; 95% CI = [92.4%, 99.7%]). This was significantly above the
target of 80% (p < 0.001). Within specific usefulness categories, the analysis was found
to be useful for systemic therapy decisions in 97% (95% CI = [91.1%, 99.2%]) of patients,
useful for targeted therapy decisions in 72% (95% CI = [63.0%, 80.0%]) of patients, useful
for spatial location information in 96% (95% CI = [89.8%, 98.7%]) of patients, and useful for
patient education in 93% (95% CI = [86.0%, 97.0%]) of patients.

Individual oncologist usefulness ratings ranged from 70–100% for overall usefulness,
38–100% for systemic therapy decisions, 23–100% for targeted therapy decisions, 83–100%
for spatial location information, and 5–100% for patient education. In all categories except
patient education where Oncologist 7 provided the lowest rating, Oncologist 6 provided
the lowest usefulness ratings. One oncologist (Oncologist 3) provided 100% usefulness
ratings for all categories. Note that direct comparisons across oncologists are difficult as
each oncologist reviewed different sets of patients.

Figure 4 displays the quantification of the change of all ROI for all analyzed patients.
Of the 103 patients, 56 (54%) had heterogeneity in response.
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4. Discussion

This study suggests that important visual and quantitative information that is useful
for patient care is lacking in many FDG PET/CT radiology reports, and a new algorithm-
based service that offers a comprehensive quantification and analysis of change across
multiple anatomic and functional parameters for each lesion ROI shows promise for
improving management of patients with metastatic cancer.

The steps involved in the proposed procedure are outlined as follows. First, the
oncologist determines that the patient is appropriate for the analysis and orders the service.
Next, previously performed and interpreted radiological images are identified by the
physician and transferred to a third party, which uses an algorithm-based service cleared by
the Food and Drug Administration to perform a comprehensive quantitative analysis. This
analysis is then delivered to the treating oncologist, who interprets it in combination with
the previously received standard-of-care radiology reports and other patient information.
As appropriate, multi-disciplinary consultation (e.g., radiology, nuclear medicine, radiation,
medical, and surgical oncology) occurs, and a final treatment decision is made. This
augmentative analysis would provide information that is both of clinical value to the
oncologist and not available from other standard-of-care and diagnostic procedures. In
this preliminary assessment, the augmentative information provided by the algorithm-
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based service was viewed as providing clinical utility in the vast majority of patients with
metastatic solid tumors and lymphoid malignancies.

4.1. Clinical Usefulness of Algorithm-Based Analysis

Overall, the majority of oncologists rated the augmentative analysis as providing
clinical utility in addition to the previously performed radiology report in greater than
80% of patient cases (p < 0.001). This may be attributed to the study’s focus on patients
with metastatic disease, which resulted in a high prevalence of intra-patient response
heterogeneity and patients having more than 10 lesion ROI. The rating of utility for systemic
therapy decisions closely mirrored the ratings of overall clinical utility. This suggests that
the additional information can help confirm both when it is appropriate to continue the
current treatment and when to consider a change in systemic therapy. A change in systemic
therapy could include discontinuation of the current therapy and replacement with the
next line of therapy per clinical protocol, the escalation from monotherapy to combination
therapy, recommendations for consideration in a clinical trial, or other approaches.

The very high rating for the utility of the spatial location information (96%) supports
the hypothesis that visual information is valuable in the assessment of treatment response.
A lesion located in some parts of the anatomy (e.g., the spine) may be more clinically signifi-
cant than a lesion of the same size/activity in another part of the anatomy (e.g., extremities),
and a visual representation of the disease can help oncologists make this assessment more
efficiently and effectively. Further, oncologists reported value in being able to correlate
location with the management of symptoms such as pain. Additionally, the location can
influence suitability for biopsy, type of treatment (e.g., candidacy for targeted radiation),
potential for grouping of lesions for targeted treatment, and prioritization of treatment.

In this investigation, “targeted therapy” was understood to refer to interventions that
preferentially treat a targeted subset of lesions, such as focal therapy and surgery. The lower
ratings (72%) for utility in targeted therapy decisions may be because targeted therapy
might not have been appropriate in the subset of patients examined. It is likely that the
greatest value to targeted therapy decisions would be in the context of oligoprogression,
when a few (usually three to five) lesions show progression while the remaining metastatic
disease is stable or responding. Local treatments specifically directed at resistant lesions can
contribute to controlling oligoprogression, allowing the continuation of systemic treatment
and potential prolongation of overall survival [28].

The very high rating of utility for patient education (93%) supports the importance of
visual information as an effective tool for oncologists to use when talking with patients and
their families. Patients have access to all reports in their medical records, yet the complexity
of a standard radiology report can be confusing. A simple graphic to which the oncologist
can refer could increase patient understanding, allowing them to more fully participate in
treatment decisions and, overall, improve the patient experience. Of note, one oncologist
who responded that the augmentative analysis would not be useful for patient education
cited the limited time in their clinic schedule for these discussions.

4.2. Radiology Report Analysis

The favorable ratings for the augmentative analysis highlight the importance of adding
interpretation of such an analysis to the services performed by the treating physician. In
addition to the visual presentation, the most important information for oncologists includes
quantification parameters (in particular, number of lesions and quantification of change
in lesions) and impression of overall patient response. Only 7% of the standard radiology
reports clearly quantified the number of lesions, and all of these involved patients with
zero lesions at the second time point (complete response). Understanding the total number
of lesions, and the change in lesions during treatment, appears to be very important for
assessing response. It is also valuable for clear communication with patients. Only 52%
of radiology reports quantified the change in size of a single lesion, and 66% quantified
the change in SUV of a single lesion. While reports generated more recently (2018 or
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later) were found to be significantly more quantitative, still only 62% of those reports were
quantitative, and none of the reports provided quantification of change in all lesions, as
this is not standard practice. By comparison, the augmentative analysis provided by the
algorithm-based service presents all of these quantified parameters, including individual
assessment of each detected lesion ROI.

A surprising finding was that only 46% of the radiology reports provided a clear
indication of overall patient response in the impression section. In most of the other
radiology reports, the impression section simply contained a list summarizing the results,
without a clear statement on overall patient response. This is consistent with previous
studies showing that physicians are disappointed in the unfocused nature of radiology
reports, making it difficult to determine the key message [29,30]. In addition, vague or
ambiguous language has the potential to lead to poor patient care [31]. Surveys have shown
that 75% of referring physicians look at the FDG PET/CT images themselves always or
most of the time [32], and that only 12% of referring physicians find it uncommon to contact
the interpreting physician.

Including the type of treatment is essential to provide an accurate assessment of FDG
PET/CT images, especially given the possibility of treatment-specific uptake patterns
such as immunotherapy-related adverse events [33], metabolic flare [34], and surgical
inflammation [35]. Only 35% of radiology reports in this investigation clearly report the
patient’s treatment history. However, it is possible that this information was used when
interpreting the PET scan but not included in the radiology report.

While the information in the nuclear medicine basics category may be less important
for oncologists clinically, it can be an indication of the overall quality of the PET scanning
procedure and the radiology report by demonstrating that proper quality control and
understanding of basic PET biological and technical sensitivities were considered. It was
encouraging that nearly all radiology reports included patient glucose information and
injected doses. On the other hand, surprisingly few radiology reports (11%) included the
location of the injection site. This information is important to ensure that extravasation or
other FDG activity in the arm is properly distinguished from lesions in the arm, which can
be similar in size, shape, and uptake.

4.3. Clinical Implementation and Future Work

The range of usefulness ratings across oncologists and categories indicates that clinical
adoption of such an analysis will likely vary across treating physicians and practices. It is
likely that for optimal clinical meaningfulness, the results of the algorithm-based analysis
would need to be organized into a report format that is personalized based on treating
physician preferences and the patient population for whom the treating physician provides
care. For example, one oncologist in the study (Oncologist 6) provided relatively low
usefulness ratings for treatment-making decisions, but did rate the analysis as highly useful
for patient education purposes. This oncologist may therefore benefit most from a more
simplified version of the report specifically developed for patient education (e.g., more
graphics and less text). Conversely, Oncologist 7 gave very high usefulness ratings for
systemic therapy decisions while indicating they would not use the analysis for patient
education. Thus, this oncologist may benefit from a report format that emphasizes metrics
more relevant to changes due to systemic therapy. It is important to note that for full clinical
integration of this algorithm-based analysis, all aspects of the clinical workflow must be
considered including streamlining of physician requests for the analysis, image transfer,
and delivery of the analysis back to the treating physician.

Although the algorithm-based analysis is independent of the standard radiology re-
port, the information provided should be used in combination with previous radiology
reports and other patient information. In their current stage of development, these analyses
are not intended to diagnose disease or to replace the standard radiology report. By pro-
viding comprehensive quantitative and spatial information, the algorithm-based analysis
provides new information usually not available from existing radiology reports. Also, the
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comprehensive lesion ROI analysis underscores the complexity of determining treatment
response in the metastatic cancer patient population: 56 of 103 patients (54%) presented
with at least one favorable (unchanged, decreasing, disappeared) and one unfavorable
(increasing, new) ROI. However, it is important that this type of analysis be available to
the oncologist to use in context with other patient data, including the radiology report, lab
and biomarker analyses, patient-reported symptoms, and other information. Also, while
automated technologies can identify ROI with suspected malignancy, it is important to
have a qualified physician confirm the diagnosis prior to implementing an intervention.
This type of analysis can also be very useful in focusing multidisciplinary discussions (e.g.,
tumor board).

The study was designed to determine whether the analysis provided by an augmenta-
tive, algorithm-based service has the potential to improve the management of patients with
metastatic cancer. It is limited by using retrospective data for which the oncologists did not
have full knowledge of the patient situations. It was also limited to the assessment of seven
oncologists. The radiology report data was sourced from a variety of imaging centers in
the US, and no requirements of center size or type, reporting physician experience, or other
factors were provided in the data query. Thus, the data analyzed may be different from
what is generated by large academic cancer centers. While the results of this study are en-
couraging, they should be confirmed with a prospective clinical trial. In addition, while an
assessment of changes in radiology report quantification over time was performed, ideally
a multivariable analysis analyzing multiple effects (e.g., report writer, imaging center, years
of training) on whether a report is quantitative would be performed. Limited sample size,
as well as anonymization of the exact imaging center and report writers, prevented such an
analysis in this study.

5. Conclusions

In this investigation, a novel algorithm-based analysis provided to oncologists was
shown to address quantitative and visual shortcomings of text-only radiology reports in
assessing treatment response using FDG PET/CT images of patients with metastatic cancer.
The majority of oncologists rated the new procedure, which provides a comprehensive
quantification of change and spatial location of all ROI, as clinically useful across a variety of
applications. This additional analysis would help oncologists better understand individual
patients’ treatment response and support their work to more precisely optimize each
patient’s therapy. The clinical meaningfulness of the algorithm-based analysis established
in this retrospective study must be further confirmed in a prospective clinical trial assessing
the applicability of the new analysis in various clinical settings.
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