

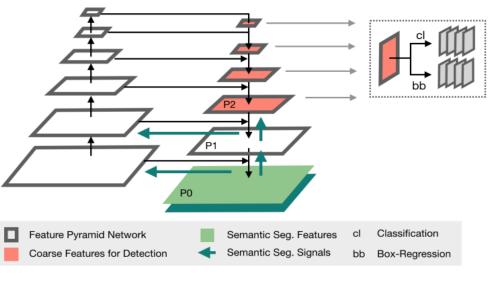
INTRODUCTION

Prostate-specific membrane antigen (PSMA) PET/CT imaging has provided significant advances in diagnosing and treating patients with prostate cancer. PSMA PET/CT has been used in AI models to evaluate lesions; however, few studies have assessed the transferability of AI models across the commonly used tracer types.

In this analysis, we deployed a CNN-based AI model designed to identify lesions on both ⁶⁸Ga-PSMA-11 PET/CT and ¹⁸F-DCFPyL PET/CT images and evaluated the generalizability and performance on ¹⁸F-PSMA-1007 **PET/CT** images, which has a different biodistribution.

MATERIALS AND METHODS

A set of N=169 images, comprising ⁶⁸Ga-PSMA-11 PET/CT images from 89 patients (126 images, 1-2 imaging time-points/patient) and ¹⁸F-DCFPyL PET/CT images from 43 patients (43 images, 1 imaging timepoint/patient), all diagnosed with metastatic prostate cancer, were used for training a lesion detection CNN employing a retina U-net architecture.



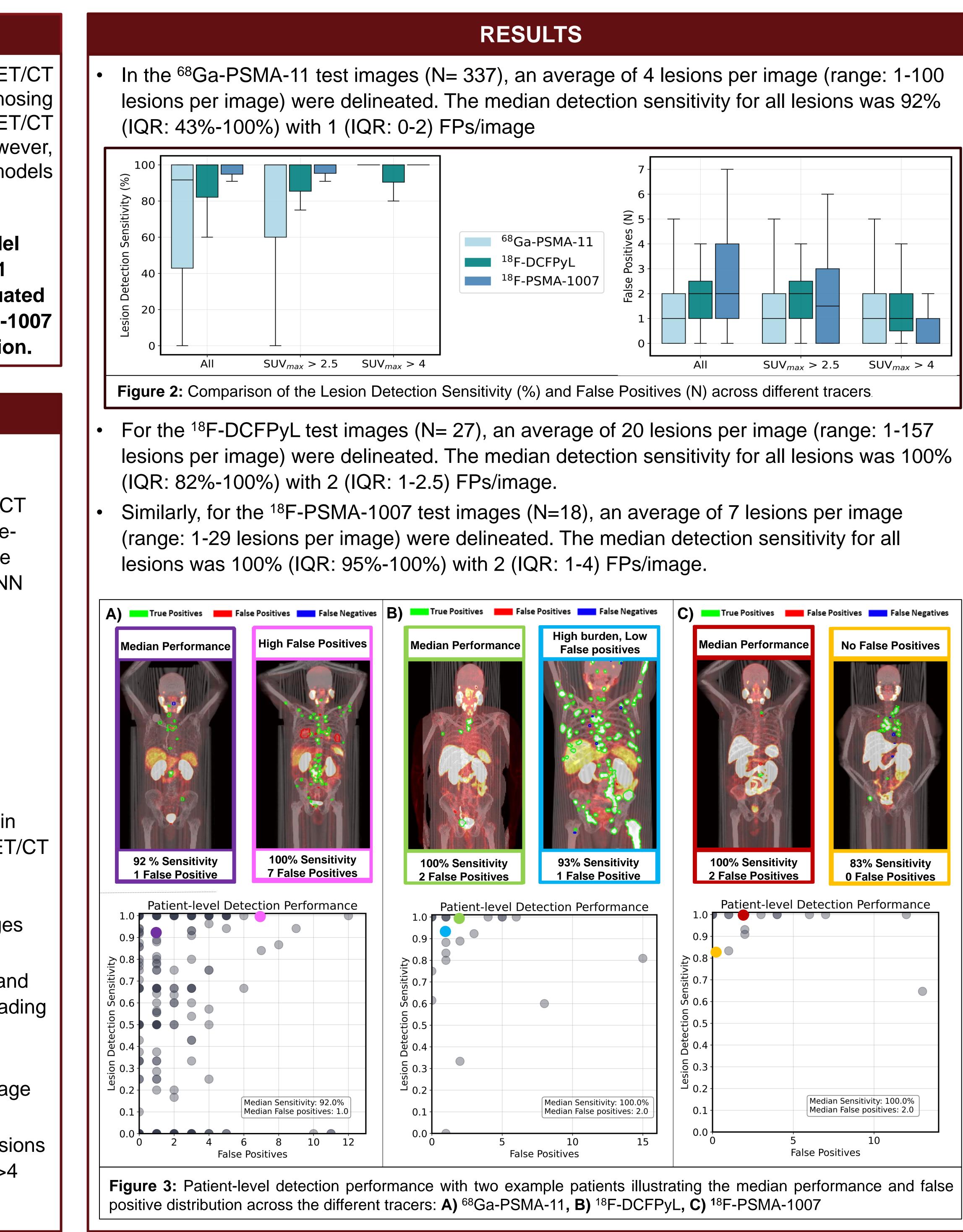

Image from Jaeger et al., 2018

Figure 1: Architecture for the Retina U-net [1]

- The CNN's performance was assessed separately in external validation datasets with ⁶⁸Ga-PSMA-11 PET/CT images (200 patients, 337 images), ¹⁸F-DCFPyL PET/CT images (27 patients, 27 images) and an additional dataset of ¹⁸F-PSMA-1007 PET/CT images (13 patients, 18 images).
- Lesions were manually delineated for comparison and reviewed by a clinician with extensive training in reading PSMA PET/CT.
- Detection performance was evaluated using the sensitivity and the number of false positives per image (FPs/image).
- Performance was summarized for all lesions, for lesions with SUV_{max} > 2.5 g/ml, and for lesions with SUV_{max} > 4 g/ml.

Radiotracer Generalizability: CNN Automated Detection in PSMA PET/CT -A Multi-Tracer Pilot Study in ⁶⁸Ga-PSMA-11,¹⁸F-DCFPyL and ¹⁸F-PSMA-1007

Ojaswita Lokre¹, Bogdan Dzyubak¹, Mikaela Dell'Oro², Roslyn J. Francis ^{2,3}, Martin A. Ebert ^{2,3,4}, Timothy G Perk¹ ¹AIQ Solutions, ²The University of Western Australia-Perth, ³Sir Charles Gairdner Hospital-Nedlands, ⁴University of Wisconsin- Madison

KEY FINDINGS

A CNN detection model, trained on ⁶⁸Ga-**PSMA-11 and ¹⁸F-DCFPyL PET/CT** images, demonstrated high median sensitivity and minimal false positive rates in the ⁶⁸Ga-PSMA-11, and ¹⁸F-DCFPyL external holdout datasets, and on the ¹⁸F-PSMA-1007 images. Although the ¹⁸F-PSMA-1007 dataset was small, this preliminary data shows the potential for generalizability across different PSMA tracers, including those with different biodistributions such as ¹⁸F-PSMA-1007.

Investigating generalizability in larger, diverse cohorts is vital to fully understand the implications for model stability and clinical reliability. Analysis is ongoing to include more ¹⁸F-PSMA-1007 images in this study.

REFERENCES

[1] Jaeger, P. F. et al. Retina U-Net: Embarrassingly Simple Exploitation of Segmentation Supervision for Medical Object Detection. Proc. Mach. Learn. Res. NeurIPS 2019 1–12 (2018).

DISCLOSURES

Authors OL, BD and TGP are employed by AIQ Solutions. RF is a scientific advisory board member of AIQ Solutions. MD is an AIQ Research Fellow. Remaining authors have no relevant relationships to disclose.

CONTACT INFORMATION

ojaswita.lokre@aiq-solutions.com